Hgudsyfgduoiaybpiu

Матеріал з Вікі ЦДПУ
Перейти до: навігація, пошук

Опції Бесселя в математиці - сім'я функцій, які є канонічними розв'язками диференціального рівняння Бесселя:

x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0,

де \alpha — довільне дійсне число, яке називається порядком.

Найбільш часто використовуються функції Бесселя цілих порядків.

Хоча \alpha и (-\alpha) породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була гладкою по \alpha ).

Функції Бесселя вперше були визначені швейцарським математиком Даніелем Бернуллі, а названі на честь Фрідріха Бесселя.

Застосування

Рівняння Бесселя виникає під час знаходження розв'язків рівняння Лапласа та рівняння Гельмгольца в циліндричних та сферичних координатах. Тому функції Бесселя застосовуються при розв'язаніі багатьох задач про поширення хвиль, статичних потенціалах і т. п., наприклад:

  • теплопровідність в циліндричних об'єктах;
  • Форми коливання тонкої круглої мембрани
  • Швидкість частинок в циліндрі, заповненому рідиною і який обертається навколо своєї осі.

Функції Бесселя застосовуються і в рішенні інших задач, наприклад, при обробці сигналів.

Визначення

Оскільки наведене рівняння є рівнянням другого порядку, у нього має бути два лінійно незалежних рішення. Проте залежно від обставин вибираються різні визначення цих рішень. Нижче наведені деякі з них.

Функції Бесселя першого роду

Функціями Бесселя першого роду, які позначаються J_\alpha(x), є розв'язки, скінченні в точці x=0 при цілих або невід'ємних \alpha. Вибір конкретної функції і її нормалізації визначаються її властивостями. Можна визначити ці функції за допомогою розкладу в ряд Тейлора в околі нуля (або в більш загальний степеневий ряд при нецілих \alpha):

 J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m!\, \Gamma(m+\alpha+1)} {\left({\frac{x}{2}}\right)}^{2m+\alpha}

Тут \Gamma(z) - Це гамма-функція Ейлера, узагальнення факторіала на нецілі значення. Графік функції Бесселя схожий на синусоїду, коливання якої затухають пропорційно \frac{1}{\sqrt{x}}, хоча насправді нулі функції розташовані не періодично.

Нижче наведені графіки J_\alpha (x) для \alpha = 0, 1, 2:

График функции Бесселя первого рода J

Якщо \alpha не є цілим числом, функції J_\alpha (x) и J_{-\alpha} (x) лінійно незалежні і, отже, є рішеннями рівняння. Але якщо \alpha ціле, то вірно наступне співвідношення:

J_{-\alpha}(x) = (-1)^{\alpha} J_{\alpha}(x)\,

Воно означає, що в цьому випадку функції лінійно залежні. Тоді другим рішенням рівняння стане функція Бесселя другого роду.

Інтеграли Бесселя

Можна дати інше визначення функції Бесселя для цілих значень \alpha, використовуючи інтегральне представлення:

J_\alpha (x) = \frac{1}{\pi} \int\limits_{0}^{\pi}\!\cos (\alpha \tau - x \sin \tau)\,d\tau

Цей підхід використовував Бесселя, вивчивши з його допомогою деякі властивості функцій. Можливо і інше інтегральне представлення:

J_\alpha (x) = \frac{1}{2 \pi} \int\limits_{-\pi}^{\pi}\!e^{i(\alpha \tau - x \sin \tau)}\,d\tau